

C# in Depth

C# in Depth

JON SKEET

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2008 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1933988363
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08

 For family, friends, colleagues,
and all those who love C#

vii

brief contents
PART 1 PREPARING FOR THE JOURNEY1

1 ■ The changing face of C# development 3

2 ■ Core foundations: building on C# 1 32

PART 2 C# 2: SOLVING THE ISSUES OF C# 1........................... 61

3 ■ Parameterized typing with generics 63

4 ■ Saying nothing with nullable types 112

5 ■ Fast-tracked delegates 137

6 ■ Implementing iterators the easy way 161

7 ■ Concluding C# 2: the final features 183

PART 3 C# 3—REVOLUTIONIZING HOW WE CODE205

8 ■ Cutting fluff with a smart compiler 207

9 ■ Lambda expressions and expression trees 230

10 ■ Extension methods 255

11 ■ Query expressions and LINQ to Objects 275

12 ■ LINQ beyond collections 314

13 ■ Elegant code in the new era 352

ix

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the cover illustration xxviii
comments from the tech review xxix

PART 1 PREPARING FOR THE JOURNEY1

1 The changing face of C# development 3
1.1 Evolution in action: examples of code change 4

Defining the Product type 5 ■ Sorting products by
name 8 ■ Querying collections 11 ■ Representing
an unknown price 13 ■ LINQ and query expressions 14

1.2 A brief history of C# (and related technologies) 18
The world before C# 18 ■ C# and .NET are born 19
Minor updates with .NET 1.1 and the first major step:
.NET 2.0 20 ■ “Next generation” products 21
Historical perspective and the fight for developer
support 22

CONTENTSx

1.3 The .NET platform 24
Distinguishing between language, runtime, and
libraries 25 ■ Untangling version number chaos 26

1.4 Fully functional code in snippet form 28
Snippets and their expansions 28 ■ Introducing Snippy 30

1.5 Summary 31

2 Core foundations: building on C# 1 32
2.1 Delegates 33

A recipe for simple delegates 34 ■ Combining and removing
delegates 38 ■ A brief diversion into events 40 ■ Summary
of delegates 41

2.2 Type system characteristics 42
C#’s place in the world of type systems 42 ■ When is
C# 1’s type system not rich enough? 45 ■ When does C# 1’s
type system get in the way? 47 ■ Summary of type system
characteristics 48

2.3 Value types and reference types 48
Values and references in the real world 49 ■ Value and reference
type fundamentals 50 ■ Dispelling myths 51 ■ Boxing and
unboxing 53 ■ Summary of value types and reference types 54

2.4 C# 2 and 3: new features on a solid base 54
Features related to delegates 54 ■ Features related to the type
system 56 ■ Features related to value types 58

2.5 Summary 59

PART 2 C# 2: SOLVING THE ISSUES OF C# 1 61

3 Parameterized typing with generics 63
3.1 Why generics are necessary 64
3.2 Simple generics for everyday use 65

Learning by example: a generic dictionary 66 ■ Generic
types and type parameters 67 ■ Generic methods and
reading generic declarations 71

3.3 Beyond the basics 74
Type constraints 75 ■ Type inference for type arguments
of generic methods 79 ■ Implementing generics 81

CONTENTS xi

3.4 Advanced generics 85
Static fields and static constructors 86 ■ How the JIT compiler
handles generics 88 ■ Generic iteration 90 ■ Reflection and
generics 92

3.5 Generic collection classes in .NET 2.0 96
List<T> 96 ■ Dictionary<TKey,TValue> 99
Queue<T> and Stack<T> 100 ■ SortedList<TKey,
TValue> and SortedDictionary<TKey,TValue> 101
LinkedList<T> 101

3.6 Limitations of generics in C# and other languages 102
Lack of covariance and contravariance 103 ■ Lack
of operator constraints or a “numeric” constraint 106
Lack of generic properties, indexers, and other member
types 108 ■ Comparison with C++ templates 108
Comparison with Java generics 110

3.7 Summary 111

4 Saying nothing with nullable types 112
4.1 What do you do when you just don’t have a value? 113

Why value type variables can’t be null 113 ■ Patterns
for representing null values in C# 1 114

4.2 System.Nullable<T> and System.Nullable 115
Introducing Nullable<T> 116 ■ Boxing and
unboxing 118 ■ Equality of Nullable<T>
instances 119 ■ Support from the nongeneric
Nullable class 119

4.3 C# 2’s syntactic sugar for nullable types 120
The ? modifier 121 ■ Assigning and comparing with
null 122 ■ Nullable conversions and operators 124
Nullable logic 127 ■ The null coalescing operator 128

4.4 Novel uses of nullable types 131
Trying an operation without using output
parameters 131 ■ Painless comparisons with the null
coalescing operator 133 ■ Summary 136

5 Fast-tracked delegates 137
5.1 Saying goodbye to awkward delegate syntax 138
5.2 Method group conversions 140
5.3 Covariance and contravariance 141

CONTENTSxii

5.4 Inline delegate actions with anonymous methods 144
Starting simply: acting on a parameter 145 ■ Returning
values from anonymous methods 147 ■ Ignoring delegate
parameters 149

5.5 Capturing variables in anonymous methods 150
Defining closures and different types of variables 151
Examining the behavior of captured variables 152 ■ What’s the
point of captured variables? 153 ■ The extended lifetime of
captured variables 154 ■ Local variable instantiations 155
Mixtures of shared and distinct variables 157 ■ Captured
variable guidelines and summary 158

5.6 Summary 160

6 Implementing iterators the easy way 161
6.1 C# 1: the pain of handwritten iterators 162
6.2 C# 2: simple iterators with yield statements 165

Introducing iterator blocks and yield return 165 ■ Visualizing
an iterator’s workflow 167 ■ Advanced iterator execution
flow 169 ■ Quirks in the implementation 172

6.3 Real-life example: iterating over ranges 173
Iterating over the dates in a timetable 173 ■ Scoping the Range
class 174 ■ Implementation using iterator blocks 175

6.4 Pseudo-synchronous code with the Concurrency and
Coordination Runtime 178

6.5 Summary 181

7 Concluding C# 2: the final features 183
7.1 Partial types 184

Creating a type with multiple files 185 ■ Uses of partial
types 186 ■ Partial methods—C# 3 only! 188

7.2 Static classes 190
7.3 Separate getter/setter property access 192
7.4 Namespace aliases 193

Qualifying namespace aliases 194 ■ The global namespace
alias 195 ■ Extern aliases 196

7.5 Pragma directives 197
Warning pragmas 197 ■ Checksum pragmas 198

7.6 Fixed-size buffers in unsafe code 199

CONTENTS xiii

7.7 Exposing internal members to selected assemblies 201
Friend assemblies in the simple case 201 ■ Why use
InternalsVisibleTo? 202 ■ InternalsVisibleTo and signed
assemblies 203

7.8 Summary 204

PART 3 C# 3—REVOLUTIONIZING HOW WE CODE205

8 Cutting fluff with a smart compiler 207
8.1 Automatically implemented properties 208
8.2 Implicit typing of local variables 210

Using var to declare a local variable 211 ■ Restrictions
on implicit typing 212 ■ Pros and cons of implicit
typing 213 ■ Recommendations 214

8.3 Simplified initialization 215
Defining our sample types 215 ■ Setting simple properties 216
Setting properties on embedded objects 218 ■ Collection
initializers 218 ■ Uses of initialization features 221

8.4 Implicitly typed arrays 223
8.5 Anonymous types 224

First encounters of the anonymous kind 224 ■ Members
of anonymous types 226 ■ Projection initializers 226
What’s the point? 227

8.6 Summary 228

9 Lambda expressions and expression trees 230
9.1 Lambda expressions as delegates 232

Preliminaries: introducing the Func<…> delegate types 232
First transformation to a lambda expression 232 ■ Using a
single expression as the body 234 ■ Implicitly typed parameter
lists 234 ■ Shortcut for a single parameter 234

9.2 Simple examples using List<T> and events 235
Filtering, sorting, and actions on lists 236 ■ Logging in
an event handler 237

9.3 Expression trees 238
Building expression trees programmatically 239 ■ Compiling expression
trees into delegates 240 ■ Converting C# lambda expressions to
expression trees 241 ■ Expression trees at the heart of LINQ 244

CONTENTSxiv

9.4 Changes to type inference and overload resolution 245
Reasons for change: streamlining generic method
calls 246 ■ Inferred return types of anonymous
functions 247 ■ Two-phase type inference 248
Picking the right overloaded method 251
Wrapping up type inference and overload resolution 253

9.5 Summary 253

10 Extension methods 255
10.1 Life before extension methods 256
10.2 Extension method syntax 258

Declaring extension methods 258 ■ Calling
extension methods 259 ■ How extension methods
are found 261 ■ Calling a method on a null
reference 262

10.3 Extension methods in .NET 3.5 263
First steps with Enumerable 263 ■ Filtering with
Where, and chaining method calls together 265 ■ Projections
using the Select method and anonymous types 266 ■ Sorting
using the OrderBy method 267 ■ Business examples
involving chaining 269

10.4 Usage ideas and guidelines 270
“Extending the world” and making interfaces richer 270
Fluent interfaces 271 ■ Using extension methods
sensibly 272

10.5 Summary 274

11 Query expressions and LINQ to Objects 275
11.1 Introducing LINQ 276

What’s in a name? 276 ■ Fundamental concepts in
LINQ 277 ■ Defining the sample data model 282

11.2 Simple beginnings: selecting elements 283
Starting with a source and ending with a selection 283
Compiler translations as the basis of query expressions 284
Range variables and nontrivial projections 287
Cast, OfType, and explicitly typed range variables 289

11.3 Filtering and ordering a sequence 290
Filtering using a where clause 290 ■ Degenerate query
expressions 291 ■ Ordering using an orderby clause 292

CONTENTS xv

11.4 Let clauses and transparent identifiers 294
Introducing an intermediate computation with let 295
Transparent identifiers 296

11.5 Joins 297
Inner joins using join clauses 297 ■ Group joins with
join … into clauses 301 ■ Cross joins using multiple
from clauses 303

11.6 Groupings and continuations 307
Grouping with the group … by clause 307 ■ Query
continuations 310

11.7 Summary 313

12 LINQ beyond collections 314
12.1 LINQ to SQL 315

Creating the defect database and entities 315 ■ Populating the
database with sample data 318 ■ Accessing the database with
query expressions 319 ■ Updating the database 324 ■ LINQ to
SQL summary 325

12.2 Translations using IQueryable and IQueryProvider 326
Introducing IQueryable<T> and related interfaces 326 ■ Faking
it: interface implementations to log calls 328 ■ Gluing expressions
together: the Queryable extension methods 330 ■ The fake query
provider in action 332 ■ Wrapping up IQueryable 333

12.3 LINQ to DataSet 334
Working with untyped datasets 334 ■ Working with typed
datasets 335

12.4 LINQ to XML 338
XElement and XAttribute 338 ■ Converting sample defect data
into XML 340 ■ Queries in LINQ to XML 341 ■ LINQ to
XML summary 343

12.5 LINQ beyond .NET 3.5 344
Third-party LINQ 344 ■ Future Microsoft LINQ technologies 348

12.6 Summary 350

13 Elegant code in the new era 352
13.1 The changing nature of language preferences 353

A more functional emphasis 353 ■ Static, dynamic, implicit,
explicit, or a mixture? 354

CONTENTSxvi

13.2 Delegation as the new inheritance 355
13.3 Readability of results over implementation 356
13.4 Life in a parallel universe 357
13.5 Farewell 358

appendix LINQ standard query operators 359
index 371

xvii

foreword
There are two kinds of pianists.

 There are some pianists who play not because they enjoy it, but because their par-
ents force them to take lessons. Then there are those who play the piano because it
pleases them to create music. They don’t need to be forced; on the contrary, they
sometimes don’t know when to stop.

 Of the latter kind, there are some who play the piano as a hobby. Then there are
those who play for a living. That requires a whole new level of dedication, skill, and tal-
ent. They may have some degree of freedom about what genre of music they play and
the stylistic choices they make in playing it, but fundamentally those choices are
driven by the needs of the employer or the tastes of the audience.

 Of the latter kind, there are some who do it primarily for the money. Then there
are those professionals who would want to play the piano in public even if they weren’t
being paid. They enjoy using their skills and talents to make music for others. That
they can have fun and get paid for it is so much the better.

 Of the latter kind, there are some who are self-taught, who “play by ear,” who
might have great talent and ability but cannot communicate that intuitive understand-
ing to others except through the music itself. Then there are those who have formal
training in both theory and practice. They can explain what techniques the composer
used to achieve the intended emotional effect, and use that knowledge to shape their
interpretation of the piece.

 Of the latter kind, there are some who have never looked inside their pianos. Then
there are those who are fascinated by the clever escapements that lift the damper felts
a fraction of a second before the hammers strike the strings. They own key levelers
and capstan wrenches. They take delight and pride in being able to understand the
mechanisms of an instrument that has five to ten thousand moving parts.

FOREWORDxviii

 Of the latter kind, there are some who are content to master their craft and exer-
cise their talents for the pleasure and profit it brings. Then there are those who are
not just artists, theorists, and technicians; somehow they find the time to pass that
knowledge on to others as mentors.

 I have no idea if Jon Skeet is any kind of pianist. But from my email conversations
with him as one of the C# team’s Most Valuable Professionals over the years, from
reading his blog and from reading every word of this book at least three times, it has
become clear to me that Jon is that latter kind of software developer: enthusiastic,
knowledgeable, talented, curious and analytical—a teacher of others.

 C# is a highly pragmatic and rapidly evolving language. Through the addition of
query comprehensions, richer type inference, a compact syntax for anonymous func-
tions, and so on, I hope that we have enabled a whole new style of programming while
still staying true to the statically typed, component-oriented approach that has made
C# a success.

 Many of these new stylistic elements have the paradoxical quality of feeling very
old (lambda expressions go back to the foundations of computer science in the first
half of the twentieth century) and yet at the same time feeling new and unfamiliar to
developers used to a more modern object-oriented approach.

 Jon gets all that. This book is ideal for professional developers who have a need to
understand the “what” and “how” of the latest revision to C#. But it is also for those
developers whose understanding is enriched by exploring the “why” of the language’s
design principles.

 Being able to take advantage of all that new power will require new ways of think-
ing about data, functions, and the relationship between them. It’s not unlike trying to
play jazz after years of classical training—or vice versa. Either way, I am looking for-
ward to finding out what sorts of functional compositions the next generation of C#
programmers come up with. Happy composing, and thanks for choosing the key of
C# to do it in.

 ERIC LIPPERT

 Senior Software Engineer, Microsoft

xix

preface
I have a sneaking suspicion that many authors have pretty much stumbled into writing
books. That’s certainly true in my case. I’ve been writing about Java and C# on the
Web and in newsgroups for a long time, but the leap from that to the printed page is
quite a large one. From my perspective, it’s been an “anti-Lemony Snicket”—a series
of fortunate events.

 I’ve been reviewing books for various publishers, including Manning, for a while. In
April 2006 I asked whether it would be OK to write a blog entry on a book that looked
particularly promising: PowerShell in Action. In the course of the ensuing conversation,
I somehow managed to end up on the author team for Groovy in Action. I owe a huge
debt of thanks to my wife for even allowing me to agree to this—which makes her
sound like a control freak until you understand we were expecting twins at the time,
and she had just gone into the hospital. It wasn’t an ideal time to take on extra work,
but Holly was as supportive as she’s always been.

 Contributing to the Groovy book took a lot of hard work, but the writing bug
firmly hit me during the process. When talking with the principal author, Dierk
König, I realized that I wanted to take on that role myself one day. So, when I heard
later that Manning was interested in publishing a book about C#3, I started writing a
proposal right away.

 My relationship with C# itself goes further back. I started using it in 2002, and
have kept up with it ever since. I haven’t been using it professionally for all that
time—I’ve been flitting back and forth between C# and Java, depending on what my
employers wanted for the projects I was working on. However, I’ve never let my inter-
est in it drop, posting on the newsgroups and developing code at home. Although I

