Uncertainty and Ground Conditions
To Annelies, only she knows why.
Uncertainty and Ground Conditions: A Risk Management Approach

Martin van Staveren
Contents

Acknowledgements
ix

PART ONE The context of ground risk management in the construction industry

1 Introduction
3
- A new type of ground risk management book 3
- Objectives and target readerships 4
- State-of-the-art of ground risk management 5
- The book’s structure 6

2 The construction industry – challenges and opportunities
9
- Introduction 9
- The magnitude of the world’s construction industry 9
- Construction challenges
 - Increasing complexity 12
 - Underdeveloped integrity 14
 - High failure costs 16
 - Crisis – what crisis? 18
- Opportunities for the construction industry
 - World-wide change initiatives 19
 - Systems thinking 21

3 From uncertainty, risk and ground to GeoQ
26
- Introduction 26
- The concept of uncertainty 26
 - Three types of uncertainty 27
- The concept of risk
 - Some definitions 33
 - Risk types 34
 - Dynamic character of risk 37
 - Risk management 38
- The concept of ground and risk
 - Ground conditions 41
 - Ground uncertainty and costs 42
 - The hybrid character of ground risks 43
 - Main ground risk types 43
- The concept of ground risk management 46
 - The GeoQ concept 47
 - GeoQ and the ground-related disciplines 50
 - GeoQ and risk management 53
 - GeoQ and natural hazard management 54
 - GeoQ and quality management 55
 - GeoQ and knowledge management 58
- Summary 59
PART TWO The people factor in ground risk management

4 Individuals and risk
Introduction
The concept of the individual
Our discontinuities
Our independence
The concept of perception
Subjective perception
Dealing with different perceptions
Individuals and risk perception
Complexity of individual risk perception
Change of individual risk perception with time
Change of individual risk perception with distance
How individuals can contribute
Risk awareness
Risk responsibility
Beyond blame and claim
Beyond fear
Three types of intelligence
Time taking
The individual change agent
Summary

5 Teams and risk
Introduction
The concept of the team
From groups towards teams
Teams and culture
Teams and risk communication
Risk communication
Risk content and risk context
Singularity and risk dominance
Risk of groupthink
How teams can contribute
Expert teams
Multidisciplinary teams
Teams as change agents
Summary

6 Clients, society and risk
Introduction
Clients and risk
Do you play the ostrich game?
A contractor’s perception of the client and vice versa
Public and private clients – risk perceptions, costs and income
Confrontation or cooperation
Society and risk
From modern to post-modern risk perceptions
Balancing all those risk perceptions
Society, construction and post-modern ground conditions
Towards creative construction
Summary

PART THREE The process factor in ground risk management

7 The GeoQ risk management process
Introduction
The six GeoQ steps
Gathering project information
Identifying risks
Classifying risk
Remediating risk
Evaluating risk
Mobilizing risk information
The six GeoQ phases
The feasibility phase
The pre-design phase
The design phase
The contracting phase
The construction phase
The maintenance phase
Embedding the GeoQ process
Summary
Contents

8 GeoQ in the feasibility phase 153

- **Introduction** 153
- Ground risk management during feasibility
 - Site classification 154
 - How to do more with a minimum of ground data 156
 - Scenario analysis 160
- Case studies 162
 - Risk based decision-making for a light-rail project 162
 - Risk driven planning of an urban development project 165
- **Summary** 168

9 GeoQ in the pre-design phase 170

- **Introduction** 170
- Ground risk management during pre-design
 - Team-based risk identification and classification 171
 - Balancing risk profiles and ground investigations 178
 - Towards risk-driven ground investigations 183
- Case studies 185
 - Ground risk management for a tunnel project 185
 - Selecting the most suitable horizontal boring technique 188
- **Summary** 190

10 GeoQ in the design phase 192

- **Introduction** 192
- Ground risk management during design
 - Risk remediation: cause or effect approach? 194
 - Reducing the risk cause: ground parameters and the probabilistic approach 197
 - Reducing the risk effect: the observational method and fall-back scenarios 200
- Detailed and advanced ground investigations 203
 - Case studies 207
 - Liquefaction risk control below a railway 207
 - Settlement risk control under pressure 211
- **Summary** 215

11 GeoQ in the contracting phase 217

- **Introduction** 217
- Risk allocation and differing site conditions 219
 - The concept of risk allocation 219
 - The concept of differing site conditions 222
- The Geotechnical Baseline Report 224
 - The baseline concept 224
 - Preparing a Geotechnical Baseline Report 228
- Ground risk management during contracting 231
 - The Dispute Review Board 232
 - Insurance and ground risk management 233
 - From conventional contracts to partnering contracts? 235
- Case studies 239
 - The USA and contractual ground risk allocation 240
 - The UK and contractual ground risk allocation 241
 - The Netherlands and contractual ground risk allocation 242
- **Summary** 243

12 GeoQ in the construction phase 245

- **Introduction** 245
- Ground risk remediation during construction 247
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>The observational method revisited</td>
</tr>
<tr>
<td>Avoiding the pitfalls</td>
</tr>
<tr>
<td>Differing ground conditions during construction: what we can do</td>
</tr>
<tr>
<td>Case studies</td>
</tr>
<tr>
<td>Stability risk control by the observational method</td>
</tr>
<tr>
<td>A tunnel in geohydrological crisis conditions</td>
</tr>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>13 GeoQ in the maintenance phase</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Ground risk management during operation and maintenance</td>
</tr>
<tr>
<td>Life cycle concepts for cost-effective maintenance</td>
</tr>
<tr>
<td>Rational risk management for existing dikes</td>
</tr>
<tr>
<td>Ground dispute resolution after project completion</td>
</tr>
<tr>
<td>Risk filing and mobilization by modern ICT tools</td>
</tr>
<tr>
<td>Case studies</td>
</tr>
<tr>
<td>Rational risk management approach for dike safety assessments</td>
</tr>
<tr>
<td>Operational risk management at a waste disposal site</td>
</tr>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>PART FOUR A look into the future</td>
</tr>
<tr>
<td>14 To end with a new start</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Ground risk management: the people</td>
</tr>
<tr>
<td>Ground risk management: the process</td>
</tr>
<tr>
<td>Towards a prosperous construction industry</td>
</tr>
<tr>
<td>Some last words</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>
Acknowledgements

The open GeoQ framework for managing ground-related risk, as presented in this book, emerged after the start of the third millennium. Writing this book has only been possible with the indispensable support of many pioneering individuals and teams over the last years, in The Netherlands and abroad. These professionals have both technical and non-technical backgrounds and work at many different firms, government agencies, universities and institutions. They dared to try-out parts of the GeoQ concept in their projects and together we learned a lot from it. These experiments resulted in the case studies in this book. I want to thank all of these professionals, for their opinions, suggestions and feedback on the GeoQ risk management approach.

Special thanks go to the many organizations who gave me opportunities to present the GeoQ process and to receive their feedback, including the Delft University of Technology, Rijkswaterstaat of the Dutch Ministry of Public Works and Water Management, Fugro, Heijmans, Volker Wessels, CROW, CUR, Norwegian Geotechnical Institute, Geo Research Institute in Japan, GeoHohai of Hohai University in China and Argonne National Laboratory in the USA.

There are a number of people I want to mention in particular. The late David Price, the first professor of Engineering Geology at the Delft University of Technology, is my great inspirator in engineering geology, particularly concerning the relationship between risk, ground investigations and contractual aspects.

Robert J. Smith of Wickwire Gavin in Madison and Red Robinson of Shannon and Wilson in Seattle shared their viable GBR experiences and information with me during my visit in December 2000. With Alan Pace I had interesting exchanges of opinions and information about ground risk allocation. Thanks go to all three of them.

Joop Halman, professor at the University of Twente, thank you for sharing some knowledge and experiences with risk management in general and the Risk Diagnosing Method for industrial innovation management in particular.
Acknowledgements

Joost Wentink, managing director of GeoDelft and Erik Janse, GeoDelft’s operational director, thanks for providing me some appreciated time to work on this book. Erik issued me with interesting information as well. Colleagues of GeoDelft’s Management Team, I appreciate your understanding for my ground risk management bias and drive to complete this book in due time. In particular, Marco Hutteman, I remember the inspiring management development week we shared at Pierrefitte in France, autumn 2005, which proved to be a catalyst for this book. Gerard Vennegoor of Pierrefitte, a thanks to you for your wise words.

Furthermore, thanks to all my colleagues at GeoDelft, the pioneers from the GeoQ-team and especially the teams of the GeoLab Department. These teams proved to have an exceptional degree of self-management during the periods I worked on the book. Jan Mul of the GeoDelft library, many thanks for the many papers and references you provided over the years. Alex Hollingsworth, Lanh Te and Jackie Holding of Elsevier in Oxford, I really appreciate your professional advice and support.

Finally, above all, Annelies, Charlotte, Josephine and Frédérique, many thanks for all the support and understanding, which made it possible to transform my challenge into this book.
PART ONE

The context of ground risk management in the construction industry
1 Introduction

A new type of ground risk management book

How can we live without construction? It fulfils many of our fundamental needs and has existed since the earliest development of mankind. Incorporating engineering and maintenance activities, construction, provides us with houses, schools, hospitals, industrial plants and infrastructure. We are all affected by these structures, hour after hour, day after day, year after year.

There is no construction without ground. Any kind of construction needs a foundation. Any construction, whether very small or extremely large, has some form of connection with the inherently uncertain ground. Our ability to cope with this uncertainty will make a difference between our foundation settlements or not, between excess groundwater in our basements or not, or even whether our structures collapse during an earthquake or not.

Until now, the ground has always been a major driver of risk in many construction projects all over the world. This is reflected in the relatively high failure costs and often small profit margins in the construction industry. Many projects are completed at a higher cost than estimated, as well as much later than scheduled. This causes serious additional expenditure for clients, reduced profitability or even losses for contractors and a lot of irritation for the public.

For many years, risk management has added value in many sectors and industries, such as the financial sector, the chemical industry and the offshore industry. In construction, however, risk management has not been entirely incorporated and exploited, in spite of the industry’s inherent uncertainties and high risks. The application of well-structured risk management during all project stages, from feasibility through to construction and maintenance, needs to be started or extended to many more projects. This situation is particularly apparent in ground-related engineering and construction activities.

A serious obstruction to the introduction and application of risk management is the people factor. Together, we are that people factor. Typical human attitudes and behaviour, driven by unawareness and fear, often prevent us from considering
risk in a timely and effective way. As a result, we will miss opportunities to optimize projects and benefits for our organizations, our clients and our societies as a whole remain hidden and untouched.

The combination of these four interrelated aspects, construction, ground, risk management and the people factor, provides an opportunity for a new type of risk management book. Is there a need for it? Yes, I think there certainly is, in spite of a number of related books published over recent years. Examples are those written by Edwards and Bowen (2005), Weatherhead et al. (2005), Smith (2003, 1998), Boothroyd and Emmet (1996), Godfrey (1996), Edwards (1995), Flanagan and Norman (1993) and Thompson and Perry (1992). All these books cover risk management in the construction industry, but do not focus on ground risk management. The number of available books that cover ground-related risk management in particular is limited. Although works by Clayton (2001), Hatem (1998) and Skipp (1993) do focus on ground risk management, they pay little attention to the people factor. None of these books combines the four interrelated factors dealt with in this book.

Objectives and target readerships

The main objective of this book is to contribute to the application of cost-effective ground risk management. It considers ground conditions in their widest definition and includes all types of ground, groundwater, ground-related pollution, and all forms of man-made structure. The latter refers to buried structures, such as pipelines, piles or archaeological remains.

In today's increasingly global market we must differentiate or die, according to Trout and Rivkin (2000) in their guideline on how to survive killer-competition. Ground-related innovations in engineering and construction are urgently required to gain competitive advantage. This book’s secondary objective is therefore that ground risk management should act as a sort of airbag against the inherent business risks of innovations. A similar risk management approach has been used in other industries. For instance, the Risk Diagnosing Method (RDM) proposed by Keizer, Halman and Song (2002) has been successfully applied in the consumer electronics and food industries.

GeoQ, where Q stands for quality, will become the vehicle to meet our objectives. It is an easy-to-use and flexible framework for ground risk management during the entire life cycle of all types of construction projects. It is independent of the type of ground conditions expected and can reveal many hidden and ground-related opportunities, such as cost savings, tighter schedules, improved project quality and increased profitability for a lot of stakeholders. Anyone can make GeoQ fit-for-purpose, to meet the specific requirements of any small or large construction project, anywhere in the world.
Given these objectives, the main target readership will include civil engineering and construction professionals involved in ground-related issues in some way. They may be working with contractors, engineering firms and clients, studying for BSc, MSc and MBA degrees or teaching and performing research at universities and institutes. Here we recognize construction managers, project planners, project designers, geotechnical engineers, soil engineers, rock engineers, engineering geologists, ground-related scientists, graduate and postgraduate students.

I hope to inspire and motivate this anticipated variety of readers, who will all encounter their ground risks in some form throughout their careers. If many of you start to participate in the worldwide adoption of structured ground risk management, we will be able to make a difference in the rapidly changing construction industry.

State-of-the-art of ground risk management

The state-of-the-art of ground risk management, as presented in this book, is a mixture of theory and practice. It is derived from a variety of engineering, business administration and human sciences and includes many aspects of ground engineering and construction, some physics, statistics and geology, as well as several fundamentals of psychology, sociology, and even some philosophy. According to a modern risk management approach, as proposed by Edwards and Bowen (2005) for instance, risk is considered to form both an obstruction and an opportunity for project success.

Empirical developments are major drivers for innovation, particularly for ground-related engineering and construction. I, therefore, do not intend to present a new scientific risk management theory, but will present a structured and risk-prone way of thinking and doing.

GeoQ ground risk management is a form of process innovation that typically emerged by trial and error. It has been applied in a wide range of projects, including tunnels, (rail)roads and even a waste disposal site, resulting in its present state-of-the-art. Common scientific approaches, such as objectivity and the proof of principle by experiment, are used within the limitations of the available experience. I have included abundant references from a variety of disciplines to support and criticize my opinions about and experience of ground risk management. Colleagues from all over the world suggested many of these, others I approached by purpose or just came across.

The GeoQ framework should not be seen as having arrived its final state of development. It has been introduced only recently and there will be ample opportunity for further improvement. Many of the GeoQ supporting practices that are presented, such as scenario analysis, risk identification and classification methods, ground investigations, and the observational method with monitoring,
are not new but are readily available to deliver GeoQ support. Some may demand further development to increase their cost-effectiveness and ease for daily use in ground risk management.

The first part of this book pays particular attention to thinking and reflection, while the second part is mainly concerned with learning by doing. This combination will not be able to prevent each and every project crisis from time to time. Risk management is by no means a panacea capable of preventing all risks in ground engineering and construction activities. If we can merely reduce the probability of such risks occurring, as well as their effects, then the objectives of this book will have been achieved.

The book’s structure

The structure of this book is designed to help first-time users, who are not yet familiar with risk management, as well as experienced professionals using the book as a reference guide for applied ground risk management.

According to John Naisbitt (1984): ‘What happens is that whenever new technology is introduced in society, there must be a counterbalancing human response – that is high touch – or the technology is rejected.’ GeoQ ground risk management, with its technological tools, should be appraised as a form of new technology. Experience teaches the importance of giving ample attention to professional attitudes and behaviour. If not, risk management becomes little more than a tick-box exercise and a waste of our precious time and money. This explains the high tech and high touch approach in this book: to provide fertile ground for a wide acceptance and application of ground risk management. Figure 1.1 shows the book’s structure, together with the corresponding chapters.

Figure 1.1: The book structure – GeoQ ground risk management with its three pillars.
Introduction

Chapters 1, 2 and 3 serve as the foundation slab and bear the three pillars of GeoQ ground risk management and its future: people, processes and expertise. Following the introduction in Chapter 1, Chapter 2 presents a number of challenges and opportunities for global construction. It serves as an appetiser for Chapter 3, which brings us from uncertainty, via risk, risk management and the ground, to the concept of GeoQ.

Chapters 4 to 6 focus on the high touch or human factor, the combination of people and risk. These chapters highlight the need for risk awareness and the inherent differences in people’s perception of risk. Chapter 4 identifies certain characteristics of individual risk perceptions, as well as how individuals can contribute to effective risk management. Chapter 5 explores the interaction of individuals in teams, including aspects such as team culture and risk communication. The way in which teams may contribute to ground risk management is also discussed. Chapter 6 describes how clients and society perceive the risk caused by construction. We can use their insights to guarantee more effective communication about (ground) risk with these stakeholders.

Chapters 7 to 13 explore the high-tech side of ground risk management, in particular the technical-organizational or process aspect. These chapters present the application of the tried-and-tested GeoQ method in six generic project phases, to provide us and our teams, clients and society with high quality construction products. To guarantee maximum benefits, six subsequent risk management steps must be taken in each phase. Chapter 7 introduces this GeoQ process. Chapters 8 through to Chapter 13 present its application during the feasibility, pre-design, design, contracting, construction, and operation and maintenance phases. Each chapter begins with several ground risk mitigation measures and tools, followed by a variety of case studies, where GeoQ steps and tools will add value to the project. These are intended to help understand the many types of projects where GeoQ can be applied. Which GeoQ tool should we apply to which situation? There is no generic answer, all that can be said is: it depends. Concise summaries are presented at the end of each chapter. Finally, Chapter 14 highlights briefly some of the main opinions and conclusions of this book, followed by some type of outlook to a prosperous construction industry, as perceived from a ground risk management perspective.

The third pillar below the GeoQ concept shown in Figure 1.1 is expertise of ground engineering and construction. Many textbooks and papers are available about ground engineering, soil mechanics, rock mechanics, groundwater engineering, environmental engineering and engineering geology and provide plentiful information. This book provides numerous examples of the benefits of sound, up-to-date expertise, as well as experience, as these remain ultimately necessary for responsible and cost-effective ground risk management.

In addition to figures and tables, numerous text boxes are included in the chapters. These should be seen as a side step for reflection on the issues presented,
whose purpose is to raise awareness and provide fresh insights rather than give definite answers. Readers are invited to jump from chapter to chapter, based on their own interests, experiences and needs. Introductions and summaries in each chapter provide a quick overview of their content. Before starting to apply the GeoQ process using the guidelines and experiences described in Chapters 7 to 13, I recommend that you first read Chapters 4 to 6. After all, it is people like you and me who are responsible for construction and its associated ground risks.
2 The construction industry – challenges and opportunities

Introduction

The magnitude of construction is enormous and a number of major challenges affect its current state. This chapter explores the ever increasing complexity, the relatively underdeveloped integrity and the substantial failure costs associated with construction activities. Ground conditions play a major role in these aspects.

Is there an ongoing crisis in our industry? Perhaps there is, but the good news is that new solutions and opportunities continue to emerge. In recent years, a number of countries have initiated ambitious change programmes for the construction industry. In this chapter we will meet some of these initiatives, as they may help us cope effectively with the challenges we face.

This chapter introduces the concept of systems thinking, a potential key to unlock possibilities for the required industry transformation. It stipulates fertile ground for the concept of risk management. The last part of the chapter highlights the need for a critical mass of change-driven professionals. These individuals will be essential for implementing ground-related risk management, as presented in this book, in day-to-day engineering and construction practices. The summary presents the key issues of this chapter.

The magnitude of the world’s construction industry

The global construction industry is huge, and will continue to grow substantially in size. Based on a report by Global Insight, Sleight (2005a) predicts an increase in construction spending from 3500 billion US dollars in 2003, to 4800 billion US dollars in 2008 and 6200 billion US dollars in 2013. We should note that a billion is here